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MOTIVATION

@ 3D structures of proton were studied typically using
o semi-inclusive DIS/Drell-Yan
[Mulders, Tangerman (1996), Brodsky, Hwang, Schmidt (2002),
Bacchetta et al.(2007), Bacchetta et al., MAP Collaboration (2022)]
o jet production/hadron in jet
[Kang, Metz, Qiu, Zhou (2011), Liu, Ringer, Vodelsang, Yuan (2019),
Kang, Lee, Shao, Zhao (2021)]
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MOTIVATION

@ 3D structures of proton were studied typically using
o semi-inclusive DIS/Drell-Yan
[Mulders, Tangerman (1996), Brodsky, Hwang, Schmidt (2002),
Bacchetta et al.(2007), Bacchetta et al., MAP Collaboration (2022)]
o jet production/hadron in jet
[Kang, Metz, Qiu, Zhou (2011), Liu, Ringer, Vodelsang, Yuan (2019),
Kang, Lee, Shao, Zhao (2021)]
@ Jet was thought to be able to probe only a subset of TMD
PDFs (4 out of 8 at leading twist).

o We will demonstrate how all TMD PDFs at leading twist can

be accessed by jets by including the T-odd jet function.
[WKL, Liu, Xing, Wang, arXiv:2205.04570 [hep-ph] ]

[X. Liu and H. Xing (2021)]
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ROLE OF JET ALGORITHM

Consider I + p(P,S) — '+ J(Py) + X at EIC/EicC

@ A lot of statistics at small pr in the forward region.

Rap-qT

pT =

@ Focus on the region Aqcp ~ pr < Q.
This is unlike LHC, for which only jets with pr > Aqcp are of interest.

@ Still get jets if we use jet algorithms that involve energy (e.g.
spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]) instead of kr.
Low pr (~ Aqep) and low Q2 (~ 5 — 100 GeV?) is not a problem.
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ROLE OF JET AXIS DEFINITION

@ Probes of TMD PDFs amount to measuring gr of the virtual photon
w.r.t. two pre-defined axes:
e Drell-Yan: Two nucleon beams define two axes.
e SIDIS: Nucleon beam and momentum of tagged hadron define
two axes.

@ In DIS, with a specific recombination scheme, a jet axis can be defined
for a given jet. Once the axis is defined, we can forget about the fact
that it's a jet. We thus get a nucleon beam axis and a jet axis, w.r.t.
which g7 of the virtual photon can be defined. Therefore, jet probes of
nucleon structure in DIS are as differential as SIDIS or Drell-Yan.

n
-/ Proton Proton n
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FACTORIZATION

Factorization frame:
P,

A
P q |
far

For @ > |gr| and Q >> Aqcp, factorization from SCET:

c=HRdJ

, ®: TMD PDFs, [7: TMD jet functions (JFs)
[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]
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AZIMUTHAL ASYMMETRIES

TMD PDFs and TMD JFs encoded in azimuthal asymmetries (leading power in 1/Q):

do a?

2
Y
= 1—y+ 2 ) Fypr+ (- 26.5) Fy,
dedydzdypdd ;dP2,  wyQ? {( Y 2) vuT + (1 = y)eos(24s)

((:\(207)

sin(2¢ )

Y
+ 5 (1 —y)sin(2¢7) Fy; + S| Aey (175) Frr

2
+1S1| [(1 —y+ %) sin(gy — 65) Fypn? ) 4 (1 —y)sin(oy + o) Fppp 7708
(1 — y)sin(3y — bs)Fpp 07 “} 1S L Aey (1 - %) cos(py — bs)Fon P o;)}
F’s: convolutions of TMD PDFs and TMD JFs.

F's: accessible by traditional jet function
F's: inaccessible by traditional jet function
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TMD PDFS AT LEADING TWIST

« S - S
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+hir +ih

fﬂp/hvi]}

M 2M oM
hadron quark unpolarized | longitudinal transverse
u fl h% (Boer-Mulders)
L giL hir
T flLT (Sivers) gir }LlT, h fl' (transversity)

@ 8 TMD PDFs at leading twist, functions of x and p2
@ 3 functions f1,gir, hiT survive after pr integration giving collinear PDFs

@ T-even: fi1,q1, 11, har, hiy, hir
T-odd: fi7, hi
@ Chiral-even (accessible by traditional jet function): fi, fir, gir, 917
Chiral-odd (inaccessible by traditional jet function): hi", hiy, hir, hir
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T-0DD JET FUNCTION

@ Traditionally, only jets with high pr (> Aqcp) were of interest.
Production of high-pr jets is perturbative. Since massless perturbative
QCD is chiral-symmetric, only chiral-even (and T-even) jet functions
appear.

@ At low pr (~ Agcp), the jet is sensitive to nonperturbative physics. In
particular, spontaneous chiral symmetry breaking leads to a nonzero
chiral-odd (and T-odd) jet function when the jet axis is different from the
direction of the fragmenting parton. (This is similar to Collins effect in
fragmentation functions of hadrons .) [Liu and Xing (2021)]

J(z,kr) = Ji(z, kT)% +iJr(z, kr)

M recoiled hadrons

2
WTA axis
@ Ji: chiral-even, T-even, traditional jet function
@ Jr: chiral-odd, T-odd, encodes correlations of

quark transverse spin with quark transverse
momentum
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ADVANTAGES OF T-ODD JET FUNCTION

Like the T-even 71, T-odd J7r is process independent.

Flexibility of choosing jet recombination scheme and hence the jet axis

= Adjust sensitivity to different nonperturbative contributions

= Provide opportunity to “film” the QCD nonperturbative dynamics, if one
continuously change the axis from one to another.

@ Perturbative predictability. Since a jet contains many hadrons, the jet
function has more perturbatively calculable degrees of freedom than the
fragmentation function. For instance, in the WTA scheme, for
R~ O(1) > |gr|/E;, the z-dependence in the jet function is completely
determined:

2

Tk B) = 8(1 = 20 (k) + O (;;’j%)
[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]

@ Nonperturbative predictability. Similar to the study in [Becher and Bell
(2014)], Jr can be factorized into a product of a perturbative coefficient
and a nonperturbative factor. The nonperturbative factor has an operator
definition [Vladimirov (2020)], and as a vacuum matrix element can be
calculated on the lattice. This is unlike the TMD fragmentation function,

which is an operator element of |h + X). 0/19



PROBING TRANSVERITY

(eFSin(@s+es),

&Fuu,T)

) 2 .
Asin(eg+os) (| p = / do si =
Pyl 1511 doe osin(¢y + ¢g)

sin(¢ g +og)
@ ryp TS
We simulate using PYTHIA 8.24+STRINGSPINNER [Kerbizi, Loennblad (2021)], with jet charge [Kang, Liu,
Mantry, Shao (2020)] measured to enhance flavor separation (not mandatory), with EIC kinematics.
@ Use the spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]:

2
. _ PT 1
~ h1 ® Jp, probes transversity h1 = hip + mth

dij = min(Ei_Q,

(Conventional anti-k algorithms using k7 instead of E not good for low-pp jets)
@ Change the jet axis from one to another (WTA — E-scheme), “film” nonperturbative physics.

WTA scheme: e+p—etly, ., +X (EIC)
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PROBING TRANSVERITY
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We simulate using PYTHIA 8.24+STRINGSPINNER [Kerbizi, Loennblad (2021)], with jet charge [Kang, Liu,
Mantry, Shao (2020)] measured to enhance flavor separation (not mandatory), with EIC kinematics.
@ Use the spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]:

dij = min(Ei_Q,

(Conventional anti-k algorithms using k7 instead of E not good for low-pp jets)
@ Change the jet axis from one to another (WTA — E-scheme), “film” nonperturbative physics.

E-scheme: etp—e+l, +X (EIC)
o . : : : :
EE=275 GeV, Ep=10 GeV . QJ>0.25
kr = k1 + k2 0051
z 5
s of 1
: 1_§_‘_§ﬂ_§_{+
< —
kill - 005 N L |
> Q100 GeV’, 0.1<y<0.9
T~ | 0.15<x<0.3, >0.2
—~— B e T
T P, (GeV)

10/19



PROBING TRANSVERITY
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@ Data points: from PYTHIA simulations
Lines: from factorization formula (including evolution via Sudakov factors,
normalization of J; fixed by jet charge bins, kr-dependence of J; and Jr from
pion FFs, ratio of normalization of Jr to that of J; set equal to that for pions)
@ Asymmetries at EicC are generally larger than at EIC, owing to the perturbative
Sudakov factor.
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PRrROBING BOER-MULDERS FUNCTION
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COMPARISON WITH HERMES SIDIS DATA
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ete” ANNIHILATION

We give prediction on azimuthal asymmetry in ete™ — J 4+ X at /s = /110
GeV (Belle, BaBar), 91.2, 165,240 GeV (CEPC) with WTA scheme:

A= 2/dc050 41 cos(2¢1) A7 72
T

sin?0 Fr

AT = 201) 7 -
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001 —
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SUMMARY AND OUTLOOK

@ With spherically-invariant jet algorithms, we can study jets at low pr
(~ Aqep), e.g. at EIC/EicC.

@ Specification of a jet axis makes jet probes of TMD PDFs in DIS as
differential as SIDIS or Drell-Yan.

@ Using the T-odd jet function, together with the traditional T-even one,
we can probe all 8 TMD PDFs at leading twist using jets.

@ T-odd jet function has the advantages of universality, flexibility, and high
predictive power.

@ We have shown that the T-odd jet function gives rise to sizable azimuthal
asymmetries at EIC/EicC, which help probe the chiral-odd TMD PDFs,
such as the quark transversity and the Boer-Mulders function, which the
traditional jet function is unable to access.

@ T-odd jet function provides new input to the global analysis of
nonperturbative proton structure.
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Thank you.
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Backup slides
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AZIMUTHAL ASYMMETRY AT LEADING TWIST

TMD PDFs and TMD JFs encoded in azimuthal asymmetries:

do - 012 1—y+ yj P + (1 o )COS(2¢ )14‘n'r,)s(2(i>,7)
drdydzdpdp,dP?,  yQ? vty ) tuer v e
+ 8y (1 — y) sin(26,) FEE00 4 8 Ay (1 - %) Fre
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The F's are convolutions of TMD PDFs and TMD JFs:

ClufJ]=x> el /dQPT /koT5(2) (pr + qr — kr) w(pr, k1) f(x, p7)J (2, kF)
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where h = P /|P;1 | and hy = har + 253 iy
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